Solving Multi Objective Stochastic Programming Problems Using Differential Evolution
نویسندگان
چکیده
Stochastic (or probabilistic) programming is an optimization technique in which the constraints and/or the objective function of an optimization problem contains random variables. The mathematical models of these problems may follow any particular probability distribution for model coefficients. The objective here is to determine the proper values for model parameters influenced by random events. In this study, Differential Evolution (DE) and its two recent variants LDE1 and LDE2 are presented for solving multi objective linear stochastic programming (MOSLP) problems, having several conflicting objectives. The numerical results obtained by DE and its variants are compared with the available results from where it is observed that the DE and its variants significantly improve the quality of solution of the given considered problem in comparison with the quoted results in the literature.
منابع مشابه
Solving fuzzy stochastic multi-objective programming problems based on a fuzzy inequality
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic or<b...
متن کاملارائه مدلی برای حل مسائل برنامهریزی تصادفی چند هدفه با استفاده از تابع عضویت هذلولوی
Since most real-world decision problems, because of incomplete information or the existence of linguistic information in the data are including uncertainties. Stochastic programming and fuzzy programming as two conventional approaches to such issues have been raised. Stochastic programming deals with optimization problems where some or all the parameters are described by stochastic variables. I...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملUsing Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملSolving stochastic programming problems using modified differential evolution algorithms
Stochastic (or probabilistic) programming (SP) is an optimization technique in which the constraints and/or the objective function of an optimization problem contain random variables. The mathematical models of these problems may follow any particular probability distribution for model coefficients. The objective here is to determine the proper values for model parameters influenced by random e...
متن کامل